Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585983

RESUMO

Cone-Rod Homeobox, encoded by CRX, is a transcription factor (TF) essential for the terminal differentiation and maintenance of mammalian photoreceptors. Structurally, CRX comprises an ordered DNA-binding homeodomain and an intrinsically disordered transcriptional effector domain. Although a handful of human variants in CRX have been shown to cause several different degenerative retinopathies with varying cone and rod predominance, as with most human disease genes the vast majority of observed CRX genetic variants are uncharacterized variants of uncertain significance (VUS). We performed a deep mutational scan (DMS) of nearly all possible single amino acid substitution variants in CRX, using an engineered cell-based transcriptional reporter assay. We measured the ability of each CRX missense variant to transactivate a synthetic fluorescent reporter construct in a pooled fluorescence-activated cell sorting assay and compared the activation strength of each variant to that of wild-type CRX to compute an activity score, identifying thousands of variants with altered transcriptional activity. We calculated a statistical confidence for each activity score derived from multiple independent measurements of each variant marked by unique sequence barcodes, curating a high-confidence list of nearly 2,000 variants with significantly altered transcriptional activity compared to wild-type CRX. We evaluated the performance of the DMS assay as a clinical variant classification tool using gold-standard classified human variants from ClinVar, and determined that activity scores could be used to identify pathogenic variants with high specificity. That this performance could be achieved using a synthetic reporter assay in a foreign cell type, even for a highly cell type-specific TF like CRX, suggests that this approach shows promise for DMS of other TFs that function in cell types that are not easily accessible. Per-position average activity scores closely aligned to a predicted structure of the ordered homeodomain and demonstrated position-specific residue requirements. The intrinsically disordered transcriptional effector domain, by contrast, displayed a qualitatively different pattern of substitution effects, following compositional constraints without specific residue position requirements in the peptide chain. The observed compositional constraints of the effector domain were consistent with the acidic exposure model of transcriptional activation. Together, the results of the CRX DMS identify molecular features of the CRX effector domain and demonstrate clinical utility for variant classification.

2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306314

RESUMO

Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.


Assuntos
Evolução Molecular , Smegmamorpha , Humanos , Animais , Cromossomo Y/genética , Cromossomos Sexuais , Cromossomos Humanos Y , Cromossomos Humanos X , Smegmamorpha/genética
3.
Nat Ecol Evol ; 8(4): 604-605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378803
4.
Genome Res ; 34(2): 243-255, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38355306

RESUMO

Dozens of variants in the gene for the homeodomain transcription factor (TF) cone-rod homeobox (CRX) are linked with human blinding diseases that vary in their severity and age of onset. How different variants in this single TF alter its function in ways that lead to a range of phenotypes is unclear. We characterized the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in mouse retina explants carrying knock-ins of two variants, one in the DNA-binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation in these mutant Crx retinas corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, and p.E168d2 has distinct effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are derepressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci are partially predictive of episomal MPRA activity, and distal elements whose accessibility increases later in retinal development are enriched for CREs with silencer activity. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers while having a qualitatively different impact on silencers.


Assuntos
Proteínas de Homeodomínio , Transativadores , Animais , Humanos , Camundongos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Sequências Reguladoras de Ácido Nucleico , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
5.
Nature ; 627(8002): 165-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326613

RESUMO

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Assuntos
Aracnoide-Máter , Encéfalo , Dura-Máter , Animais , Humanos , Camundongos , Aracnoide-Máter/anatomia & histologia , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/imunologia , Aracnoide-Máter/metabolismo , Transporte Biológico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Dura-Máter/anatomia & histologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Dura-Máter/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/irrigação sanguínea , Espaço Subaracnóideo/imunologia , Espaço Subaracnóideo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Veias/metabolismo
6.
PLoS Comput Biol ; 20(1): e1011802, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227575

RESUMO

The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and silencers, but the sequence context that determines whether CRX binding sites contribute to activation or repression of transcription is not understood. To investigate the context-dependent activity of CRX sites, we fit neural network-based models to the activities of synthetic CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites consistently make positive, independent contributions to CRE activity, while negative homotypic interactions between sites cause CREs composed of multiple CRX sites to function as silencers. The effects of negative homotypic interactions can be overcome by the presence of other TFBSs that either interact cooperatively with CRX sites or make independent positive contributions to activity. The context-dependent activity of CRX sites is thus determined by the balance between positive heterotypic interactions, independent contributions of TFBSs, and negative homotypic interactions. Our findings explain observed patterns of activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers may require diverse TFBSs to overcome negative homotypic interactions between TFBSs.


Assuntos
Transativadores , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Proteínas de Homeodomínio/genética , Regulação da Expressão Gênica , Sítios de Ligação/genética , Retina
7.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662358

RESUMO

Cis-regulatory elements (CREs) direct gene expression in health and disease, and models that can accurately predict their activities from DNA sequences are crucial for biomedicine. Deep learning represents one emerging strategy to model the regulatory grammar that relates CRE sequence to function. However, these models require training data on a scale that exceeds the number of CREs in the genome. We address this problem using active machine learning to iteratively train models on multiple rounds of synthetic DNA sequences assayed in live mammalian retinas. During each round of training the model actively selects sequence perturbations to assay, thereby efficiently generating informative training data. We iteratively trained a model that predicts the activities of sequences containing binding motifs for the photoreceptor transcription factor Cone-rod homeobox (CRX) using an order of magnitude less training data than current approaches. The model's internal confidence estimates of its predictions are reliable guides for designing sequences with high activity. The model correctly identified critical sequence differences between active and inactive sequences with nearly identical transcription factor binding sites, and revealed order and spacing preferences for combinations of motifs. Our results establish active learning as an effective method to train accurate deep learning models of cis-regulatory function after exhausting naturally occurring training examples in the genome.

8.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37292699

RESUMO

Dozens of variants in the photoreceptor-specific transcription factor (TF) CRX are linked with human blinding diseases that vary in their severity and age of onset. It is unclear how different variants in this single TF alter its function in ways that lead to a range of phenotypes. We examined the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in live mouse retinas carrying knock-ins of two variants, one in the DNA binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation caused by the variants corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, while p.E168d2 has stronger effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are de-repressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci were partially predictive of episomal MPRA activity, and silencers were notably enriched among distal elements whose accessibility increases later in retinal development. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers, while having a qualitatively different impact on silencers.

9.
Nat Genet ; 55(2): 346-354, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635387

RESUMO

Massively parallel reporter gene assays are key tools in regulatory genomics but cannot be used to identify cell-type-specific regulatory elements without performing assays serially across different cell types. To address this problem, we developed a single-cell massively parallel reporter assay (scMPRA) to measure the activity of libraries of cis-regulatory sequences (CRSs) across multiple cell types simultaneously. We assayed a library of core promoters in a mixture of HEK293 and K562 cells and showed that scMPRA is a reproducible, highly parallel, single-cell reporter gene assay that detects cell-type-specific cis-regulatory activity. We then measured a library of promoter variants across multiple cell types in live mouse retinas and showed that subtle genetic variants can produce cell-type-specific effects on cis-regulatory activity. We anticipate that scMPRA will be widely applicable for studying the role of CRSs across diverse cell types.


Assuntos
Genes Reporter , Células HEK293 , Animais , Humanos , Camundongos , Biblioteca Gênica , Genes Reporter/genética , Regiões Promotoras Genéticas , Retina/metabolismo
10.
J Endourol ; 37(2): 225-232, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36310434

RESUMO

Purpose: We report results of a prospective, multicenter single-arm study of transurethral vapor ablation (TUVA) of prostate tissue in patients with unilateral, intermediate-risk, localized prostate cancer (PCa). Materials and Methods: Men ≥45 years of age with biopsy-confirmed unilateral Gleason grade group 2 (GGG2) adenocarcinoma of the prostate, prostate volume of 20-80 cc, and prostate-specific antigen (PSA) ≤15 ng/mL were enrolled. Cystoscopy and transrectal ultrasound (TRUS) guidance were used to deliver ∼103°C water vapor to prostate zones for unilateral hemigland ablation, including destruction of cancers detected by multiparametric MRI (mpMRI) and confirmed by biopsy. The primary outcomes were device-related serious adverse events (SAEs). At 7 days and 6 months postprocedure, the ablation extent was assessed by mpMRI; MRI/TRUS fusion biopsies were completed at 6 months. Quality of life (QOL) was assessed with validated questionnaires. Results: All subjects underwent a single hemigland TUVA procedure. No SAEs occurred. Grade 2 procedure-related AEs included transient urinary retention (n = 4) and erectile (n = 1) or ejaculatory dysfunction (n = 1). At 7 days, mpMRI revealed complete ablation of 14/17 (82%) visible lesions. At 6 months, biopsies showed no Gleason pattern ≥4 or ≥GGG2 cancer on the treated side of prostates in 13/15 (87%) subjects. Ten of 15 (67%) subjects were biopsy negative. Of the 5 biopsy-negative subjects, 2 had one core each of 3 + 4 disease and 3 had one core each of 3 + 3 disease with ≤5% involvement. Median prostate volume was reduced by 40.7% and PSA by 58%. Extensive QOL assessments showed, on average, no appreciable negative effects of treatment. Conclusions: Initial evidence suggests that TUVA is safe in men with intermediate-risk PCa. Preliminary results demonstrate the absence of ≥GGG2 disease on the treated side in 87% of men and a favorable QOL profile.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Qualidade de Vida , Estudos Prospectivos , Neoplasias da Próstata/patologia , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos
11.
Proc Natl Acad Sci U S A ; 119(49): e2208458119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36449542

RESUMO

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks. Using Kolmogorov-Smirnov (KS) tests to compare in-class to out-of-class similarity, we found that SNF retains the ability to identify significant in-class similarity across a diverse set of target classes, and could find target classes not detectable in either platform alone. This confirmed that integration of expression-based and image-based phenotypes can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of complex natural product fractions with the SNF network to map biological signatures to specific metabolites. Three examples are presented where SNF coupled with metabolomics was used to directly functionally characterize natural products and accelerate identification of bioactive metabolites, including the discovery of the azoxy-containing biaryl compounds parkamycins A and B. Our results support SNF integration of multiple phenotypic screening approaches along with untargeted metabolomics as a powerful approach for advancing natural products drug discovery.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Metabolômica , Benchmarking , Fusão Gênica , Biblioteca Gênica
12.
Cancer Commun (Lond) ; 42(8): 716-749, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838183

RESUMO

BACKGROUND: Autophagy is elevated in metastatic tumors and is often associated with active epithelial-to-mesenchymal transition (EMT). However, the extent to which EMT is dependent on autophagy is largely unknown. This study aimed to identify the mechanisms by which autophagy facilitates EMT. METHODS: We employed a liquid chromatography-based metabolomic approach with kirsten rat sarcoma viral oncogene (KRAS) and liver kinase B1 (LKB1) gene co-mutated (KL) cells that represent an autophagy/EMT-coactivated invasive lung cancer subtype for the identification of metabolites linked to autophagy-driven EMT activation. Molecular mechanisms of autophagy-driven EMT activation were further investigated by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting analysis, immunoprecipitation, immunofluorescence staining, and metabolite assays. The effects of chemical and genetic perturbations on autophagic flux were assessed by two orthogonal approaches: microtubule-associated protein 1A/1B-light chain 3 (LC3) turnover analysis by Western blotting and monomeric red fluorescent protein-green fluorescent protein (mRFP-GFP)-LC3 tandem fluorescent protein quenching assay. Transcription factor EB (TFEB) activity was measured by coordinated lysosomal expression and regulation (CLEAR) motif-driven luciferase reporter assay. Experimental metastasis (tail vein injection) mouse models were used to evaluate the impact of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) or ATP citrate lyase (ACLY) inhibitors on lung metastasis using IVIS luciferase imaging system. RESULTS: We found that autophagy in KL cancer cells increased acetyl-coenzyme A (acetyl-CoA), which facilitated the acetylation and stabilization of the EMT-inducing transcription factor Snail. The autophagy/acetyl-CoA/acetyl-Snail axis was further validated in tumor tissues and in autophagy-activated pancreatic cancer cells. TFEB acetylation in KL cancer cells sustained pro-metastatic autophagy in a mammalian target of rapamycin complex 1 (mTORC1)-independent manner. Pharmacological inhibition of this axis via CAMKK2 inhibitors or ACLY inhibitors consistently reduced the metastatic capacity of KL cancer cells in vivo. CONCLUSIONS: This study demonstrates that autophagy-derived acetyl-CoA promotes Snail acetylation and thereby facilitates invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells and that inhibition of the autophagy/acetyl-CoA/acetyl-Snail axis using CAMKK2 or ACLY inhibitors could be a potential therapeutic strategy to suppress metastasis of KL lung cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Transcrição da Família Snail/metabolismo , Acetilcoenzima A/farmacologia , Acetilação , Animais , Autofagia/genética , Neoplasias Pulmonares/genética , Mamíferos , Camundongos , Processos Neoplásicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
13.
Trends Genet ; 38(8): 844-855, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577641

RESUMO

Sex chromosomes have evolved repeatedly across the tree of life. Most work has focused on the loss of coding regions from sex-limited chromosomes through the accumulation of deleterious mutations. By comparison, less is known about how the regulatory landscape evolves. We review theories of how regulatory landscapes evolve on sex chromosomes and the overall impact they have on gametolog expression. We integrate empirical studies on sex chromosomes with theoretical work to synthesize how regulatory evolution could occur on sex chromosomes. Recent findings have revealed that downregulation of ancestral alleles is probably widespread on Y chromosomes and that regulatory evolution plays a key role in the evolution of sex chromosomes.


Assuntos
Evolução Molecular , Cromossomos Sexuais , Alelos , Regulação da Expressão Gênica/genética , Cromossomos Sexuais/genética , Cromossomo Y
14.
Chromosome Res ; 30(4): 429-442, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35635635

RESUMO

Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.


Assuntos
Quebras de DNA de Cadeia Dupla , Smegmamorpha , Animais , Cromossomos Sexuais/genética , Reparo do DNA , Meiose , Smegmamorpha/genética
15.
F S Sci ; 2(4): 365-375, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34970648

RESUMO

OBJECTIVE: To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells. DESIGN: Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection. SETTING: Multiple academic laboratory settings. PATIENTS: Not applicable. INTERVENTIONS: Intracytoplasmic sperm(atid) injection of in vitro-derived spermatids from nhpESCs into rhesus macaque oocytes. MAIN OUTCOME MEASURES: Differentiation into spermatogenic cell lineages was measured through multiple assessments including ribonucleic acid sequencing and immunocytochemistry for various spermatogenic markers. In vitro spermatids were assessed for their ability to fertilize oocytes by intracytoplasmic sperm(atid) injection by assessing early fertilization events such as spermatid deoxyribonucleic acid decondensation and pronucleus formation/apposition. Preimplantation embryo development from the one-cell zygote stage to the blastocyst stage was also assessed. RESULTS: Nonhuman primate embryonic stem cells can be differentiated into advanced germ cell lineages, including haploid rSLCs. These rSLCs undergo deoxyribonucleic acid decondensation and pronucleus formation/apposition when microinjected into rhesus macaque mature oocytes, which, after artificial activation and coinjection of ten-eleven translocation 3 protein, undergo embryonic divisions with approximately 12% developing successfully into expanded blastocysts. CONCLUSIONS: This work demonstrates that rSLCs, generated in vitro from primate pluripotent stem cells, mimic many of the capabilities of in vivo round spermatids and perform events essential for preimplantation development. To our knowledge, this work represents, for the first time, that functional spermatid-like cells can be derived in vitro from primate pluripotent stem cells.


Assuntos
Injeções de Esperma Intracitoplásmicas , Espermátides , Animais , Blastocisto , DNA , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Feminino , Fertilização , Humanos , Macaca mulatta , Masculino , Gravidez
16.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486522

RESUMO

Enhancers and silencers often depend on the same transcription factors (TFs) and are conflated in genomic assays of TF binding or chromatin state. To identify sequence features that distinguish enhancers and silencers, we assayed massively parallel reporter libraries of genomic sequences targeted by the photoreceptor TF cone-rod homeobox (CRX) in mouse retinas. Both enhancers and silencers contain more TF motifs than inactive sequences, but relative to silencers, enhancers contain motifs from a more diverse collection of TFs. We developed a measure of information content that describes the number and diversity of motifs in a sequence and found that, while both enhancers and silencers depend on CRX motifs, enhancers have higher information content. The ability of information content to distinguish enhancers and silencers targeted by the same TF illustrates how motif context determines the activity of cis-regulatory sequences.


Different cell types are established by activating and repressing the activity of specific sets of genes, a process controlled by proteins called transcription factors. Transcription factors work by recognizing and binding short stretches of DNA in parts of the genome called cis-regulatory sequences. A cis-regulatory sequence that increases the activity of a gene when bound by transcription factors is called an enhancer, while a sequence that causes a decrease in gene activity is called a silencer. To establish a cell type, a particular transcription factor will act on both enhancers and silencers that control the activity of different genes. For example, the transcription factor cone-rod homeobox (CRX) is critical for specifying different types of cells in the retina, and it acts on both enhancers and silencers. In rod photoreceptors, CRX activates rod genes by binding their enhancers, while repressing cone photoreceptor genes by binding their silencers. However, CRX always recognizes and binds to the same DNA sequence, known as its binding site, making it unclear why some cis-regulatory sequences bound to CRX act as silencers, while others act as enhancers. Friedman et al. sought to understand how enhancers and silencers, both bound by CRX, can have different effects on the genes they control. Since both enhancers and silencers contain CRX binding sites, the difference between the two must lie in the sequence of the DNA surrounding these binding sites. Using retinas that have been explanted from mice and kept alive in the laboratory, Friedman et al. tested the activity of thousands of CRX-binding sequences from the mouse genome. This showed that both enhancers and silencers have more copies of CRX-binding sites than sequences of the genome that are inactive. Additionally, the results revealed that enhancers have a diverse collection of binding sites for other transcription factors, while silencers do not. Friedman et al. developed a new metric they called information content, which captures the diverse combinations of different transcription binding sites that cis-regulatory sequences can have. Using this metric, Friedman et al. showed that it is possible to distinguish enhancers from silencers based on their information content. It is critical to understand how the DNA sequences of cis-regulatory regions determine their activity, because mutations in these regions of the genome can cause disease. However, since every person has thousands of benign mutations in cis-regulatory sequences, it is a challenge to identify specific disease-causing mutations, which are relatively rare. One long-term goal of models of enhancers and silencers, such as Friedman et al.'s information content model, is to understand how mutations can affect cis-regulatory sequences, and, in some cases, lead to disease.


Assuntos
Células Fotorreceptoras/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Feminino , Masculino , Camundongos , Ligação Proteica , Retina/citologia , Retina/fisiologia , Fatores de Transcrição/genética
17.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520734

RESUMO

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Assuntos
Ciclo Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Feminino , Humanos , Masculino , Neoplasias/imunologia
18.
Cell Rep ; 36(5): 109491, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348154

RESUMO

The exocyst is an evolutionarily conserved protein complex that regulates vesicular trafficking and scaffolds signal transduction. Key upstream components of the exocyst include monomeric RAL GTPases, which help mount cell-autonomous responses to trophic and immunogenic signals. Here, we present a quantitative proteomics-based characterization of dynamic and signal-dependent exocyst protein interactomes. Under viral infection, an Exo84 exocyst subcomplex assembles the immune kinase Protein Kinase R (PKR) together with the Hippo kinase Macrophage Stimulating 1 (MST1). PKR phosphorylates MST1 to activate Hippo signaling and inactivate Yes Associated Protein 1 (YAP1). By contrast, a Sec5 exocyst subcomplex recruits another immune kinase, TANK binding kinase 1 (TBK1), which interacted with and activated mammalian target of rapamycin (mTOR). RALB was necessary and sufficient for induction of Hippo and mTOR signaling through parallel exocyst subcomplex engagement, supporting the cellular response to virus infection and oncogenic signaling. This study highlights RALB-exocyst signaling subcomplexes as mechanisms for the integrated engagement of Hippo and mTOR signaling in cells challenged by viral pathogens or oncogenic signaling.


Assuntos
Via de Sinalização Hippo , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Vírus/isolamento & purificação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Citosol/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Viroses/metabolismo , Proteínas de Sinalização YAP/metabolismo , eIF-2 Quinase/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo
19.
Genome Res ; 31(8): 1486-1497, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131005

RESUMO

Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.


Assuntos
Processamento Alternativo , Smegmamorpha , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Smegmamorpha/genética , Transcriptoma
20.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33598708

RESUMO

While the cost and time for assembling a genome has drastically decreased, it still remains a challenge to assemble a highly contiguous genome. These challenges are rapidly being overcome by the integration of long-read sequencing technologies. Here, we use long-read sequencing to improve the contiguity of the threespine stickleback fish (Gasterosteus aculeatus) genome, a prominent genetic model species. Using Pacific Biosciences sequencing, we assembled a highly contiguous genome of a freshwater fish from Paxton Lake. Using contigs from this genome, we were able to fill over 76.7% of the gaps in the existing reference genome assembly, improving contiguity over fivefold. Our gap filling approach was highly accurate, validated by 10X Genomics long-distance linked-reads. In addition to closing a majority of gaps, we were able to assemble segments of telomeres and centromeres throughout the genome. This highlights the power of using long sequencing reads to assemble highly repetitive and difficult to assemble regions of genomes. This latest genome build has been released through a newly designed community genome browser that aims to consolidate the growing number of genomics datasets available for the threespine stickleback fish.


Assuntos
Genoma , Smegmamorpha , Animais , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Smegmamorpha/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...